LAB 7: LENSES

AIM: To determine the focal length of a converging lens
APPARATUS \& MATERIALS:

light source	retort stand
converging lens	lens holder
object screen	image screen
metre rule	

Diagram: Apparatus for the focal length of a converging lens

METHOD:

- Set up the illuminated object screen in front of the lens as shown in the above diagram.
- Adjust the image screen until the object is focussed on it.
- Measure the distance from the illuminated object screen to the lens, \boldsymbol{u}, and measure the distance of the lens to the image screen, \boldsymbol{v}.
- Keep the illuminated in a fixed position and then move the image screen into various positions until a sharp image is formed on the screen.
- Record six (6) different values of \boldsymbol{u} and \boldsymbol{v}.
- Calculate the values of $\mathbf{1 / u}$ and $\mathbf{1 / v}$.

THEORY:

- Define the focal length of lens and state the formula.

RESULTS:

- Record and tabulate all results in table below (showing all headings and units)

$\mathrm{u}(\mathrm{cm})$	$\mathrm{v}(\mathrm{cm})$	$1 / \mathrm{u}\left(\mathrm{cm}^{1}\right)$	$1 / v\left(\mathrm{~cm}-{ }^{1}\right)$

- Plot the graph of $\mathbf{1} / \mathbf{u}$ against $\mathbf{1 / v}$.

CALCULATIONS:

- Find the value where the straight line intercepts the y-axis on your graph, \boldsymbol{k}.
- Calculate the focal length, f, by using the formula below

$$
f=1 / k
$$

CONCLUSION:

- State the focal length of the converging lens.

