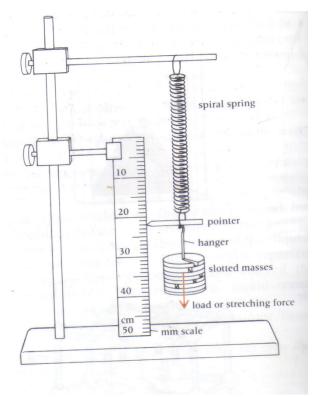
LAB 10: HOOKE'S LAW


AIM: To determine the ratio for the stretching force and the extension of a spring.

APPARATUS AND MATERIALS:

- spiral spring rule (mm scale)
- retort stand hanger

slotted mass

optical (pin pointer)

Diagram: Apparatus for Hooke's Law

METHOD:

- Arrange a stand to hold a millimetre scale close to a hanging spiral spring as shown in the diagram above.
- Attach a pointer to the end of the spring and take a scale reading of the pointer for the unstretched, unloaded spring.

- Hang the slotted mass hanger to the end of the spring and take a series of scale readings as slotted masses are added to the hanger, increasing the the stretching force or load.
- Record the readings in a table.
- Calculate the stretching force using F = mg, where g = 10 N/kg.
- Calculate the increase in length or the extension of the spring by subtracting the initial length of scale reading for the unloading spring from all of the loaded readings.

THEORY:

• State Hooke's law and the formula.

RESULTS:

• Record and tabulate all results in table below (showing all headings and units)

Mass on hanger	Stretching force	Scale reading	Extension of the spring
m / (kg)	mg / (N)	/ (mm)	/ (mm)

• Plot a graph of extension against the stretching force.

CALCULATIONS:

• Calculate the gradient of the line to determine the ratio for the stretching force and the extension of a spring.

CONCLUSION:

• State the ratio for the stretching force and the extension of a spring.