Experiment 2:

The Compound Pendulum

- in this experiment, you will be required to investigate how the period of oscillation of a metre rule is affected by the position of a mass attached to it.
 - (a) (i) Pass the pin through the small hole at the top of the rule, and firmly clamp the cork so that the rule hangs vertically and can swing freely in a vertical plane as shown in Fig. 1.1.

Fig. 1.1

- (ii) Attach the 100g mass close to the bottom of the rule. Measure and record the distance d between the pin and the centre of the mass. Describe how you made this measurement.
- (III) Slightly displace the rule, so that it performs small oscillations. Make and record measurements in order to determine a value for the period T of these oscillations.
- (iv) Repeat the experiment for different values of d until you have a total of five sets of readings for d and T. Values of d should not be less than 30 cm.
- (b) Theory predicts that Tand d'are related by the expression

$$T^2 = \frac{4\pi^2(I + m\sigma^2)}{k}$$

where $m = 0.10 \,\mathrm{kg}$ and I and k are constants.

- (I) Tabulate values of T^2 and d^2 .
- (ii) Justify the number of significant figures which you have quoted for T^2 and for d^2 .
- (ifi) Plot these values of T^2 and d^2 on the graph grid on page 5.
- (iv) Draw the best straight line to fit your points.
- (c) By taking appropriate measurements from your graph, determine numerical values, including appropriate units, for k and L