LAB 19: CARBON RESISTORS IN SERIES

AIM: To determine the resistance, \mathbf{R}, of a carbon resistor

APPARATUS \& MATERIALS

6 identical carbon resistors ammeter
battery connecting wires

crocodile clip

METHOD

- Set up the circuit as shown in the diagram above where $\mathbf{X Y}$ is the string of six identical carbon resistors and \mathbf{C} the crocodile clip.
- Record the value of \mathbf{I}, the current through the ammeter, with one resistor between \mathbf{X} and \mathbf{C}.
- Repeat the procedure to obtain pairs of values of I and \mathbf{n}, where \mathbf{n} is the number of resistors in the circuit between \mathbf{X} and \mathbf{C} for $\mathbf{n}=\mathbf{1}$ to 6. (DO NOT connect the clip \mathbf{C} to point \mathbf{X})

THEORY:

- State Ohm's Law and the formula associated with it. State units of resistance.

RESULTS / CALCULATIONS

- Tabulate these pairs of values along with the corresponding values of $\mathbf{1 / I}$
- Record and tabulate all results in table below (showing all headings and units)

Number of carbon resistors (n)	Current (I) /(A)	1/Current (1/I) $/\left(\mathrm{A}^{-1}\right)$

- Plot the graph of $\mathbf{1 / I}$ against \boldsymbol{n}, starting both axis at zero.

CALCULATIONS:

- Determine the slope, \mathbf{S}, of the graph
- Find the value of R, given that $\mathbf{S}=\mathrm{R} / \mathbf{E}$ where $\mathbf{E}=\mathbf{1 . 5 V}$
- Record the interception, \mathbf{K}, on the $\mathbf{1 / I}$ axis and determine the corresponding value of current, $\boldsymbol{I}_{\text {k }}$.

CONCLUSION

- State the resistance, R, of a carbon resistor
- Why should you not connect clip \mathbf{C} to the point \mathbf{X} ?

