1. You are to spend no more than $\frac{1}{2}$ hour on this question.

A liquid, A, initially at temperature $T_1 = 28.4$ °C, is heated by an immersion heater in a container. The resulting temperature, T_2 , is recorded at 1 minute intervals and the following results obtained.

Time, t / min.	0	1	2	3	4	5	6	7
Temperature T ₂ /°C	28.4	36.0	43.1	52.5	60.5	69.0	75.1	84.3
Temperature changes ΔT/°C	0							

Complete the table by computing the temperature changes $\Delta T = T_2$	- T _I . (4 marks)
Plot a graph of Temperature change, ΔT , against time, t , on page 3.	. (9 marks)
Find the slope, S, of the graph.	
	(5 marks)
C_p the Specific Heat Capacity of the liquid is related to the slope $S_p = \frac{2000}{s}$ J kg ⁻¹ K ⁻¹ . Find the Specific Heat Capacity of the liquid is related to the slope $S_p = \frac{2000}{s}$	uid.
	(2 marks
What would the temperature of the liquid after 12 minutes?	(2
	(4 marks

(f)	Another liquid, B, has a much higher specific heat capacity than Liquid A. On the same graph paper used in (b) on page 3 sketch (DO NOT PLOT) a line showing the approximate graph that would be obtained if Liquid B was the working fluid. (2 marks)
(g)	State TWO possible sources of error in this experiment and in EACH case describe a method that might be used to minimize the magnitude of the error.
	(4 marks)

Total 30 marks