2. An oscillating system has a period, T, which is related to the length, l, of the suspension by the equation $T = al^n$, where a and n are constants.

Table 1 shows the time periods obtained as the length was changed.

l/mm	231	292	411	515	859
T/s	0.94	1.06	1.27	1.42	1.86

Table 1

(a)	Plot a suitable graph using the axes on page 7 to allow you to determine the values of a
	and n .

•	[2 marks]
Use your value of n to find a .	
	[2 marks
Suggest an accurate means of determining the time period, T .	
	[2 marks

Total 10 marks

[4 marks]