SECTION A

Attempt ALL questions.

You MUST write your answers in this answer booklet.

1. (a) Using electronic timing the following data in Table 1 was obtained for a steel ball bearing falling from rest. Use the data to plot a suitable straight line graph (on page 5) to determine the value of, g, the acceleration of free fall. [6 marks]

TABLE 1

Distance, y/m	Time, t/s	t²/s²
± 2 mm	± 2 ms	_
0.400	0.281	
0.600	0.342	
0.800	0.414	
1.000	0.456	
1.200	0.500	
1.400	0.534	

Working for determination of g.

[3 marks]

(b) On the axes below sketch graphs (using down as positive) to show how the acceleration, a, velocity, v, and displacement, y, of the falling steel bearing vary with time.

(c) Using g = 9.8 m s⁻² rather than the value from (a), find the velocity of the steel bearing after it has fallen a distance of 0.90 m.

[3 marks]

Total 15 marks