| Explain the principle which underlies the checking of the balance of equations usin base quantities. | (a) | |---|-----------------------| | | | | | | | [1 mark | | | State ONE limitation of using base quantities to check the balance of equations. | (b) | | | (-) | | | | | | | | [1 mark | | | A body moving through air at a high speed, v , experiences a force, F , given b $F = kA\rho v^2$, where A is the surface area of the body, ρ is the density of air and k a unitless constant. If $A = 0.10 \pm 0.005$ m ² , $\rho = 1000 \pm 0.1$ kg m ⁻³ an $v = 30.0 \pm 1$ m s ⁻¹ , find the fractional error in the force, F . | (c) | | , | | | | | | | | | | | | | | | | | | [3 mark | | | The speed, ν , of ocean waves is related to the wavelength, λ , and the acceleration due | (d) | | gravity, g. Two relationships are proposed, $v = ag\lambda$ or $v = b\sqrt{g\lambda}$, where a and are constants with no units. Determine which of these equations is possible. | (a) | | | | | | | | | | | [3 mark that your result in (d) is correct, determine the full equation if an ocean wave d of 16 m s ⁻¹ and a wavelength of 160 m. | ssuming
is a speed | | that your result in (d) is correct, determine the full equation if an ocean wave | ssuming
is a speed | Total 10 marks