MEASURING

Recall

Measuring length, area, volume and mass

P.F.C. Page $44-48$: Vernier calipers, micrometer screw gauge Page $50-51$: Measuring the volume of a liquid

Density (P.F.C. Page $52-54$)

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

(units: $\mathrm{g} / \mathrm{cm}^{3}, \mathrm{~kg} / \mathrm{m}^{3}$)

Relative Density (P.F.C. Page 54 - 55)
The relative density of a substance is the number of times it is denser than water. It can be calculated using the formula:

$$
\begin{aligned}
\text { relative density } & =\frac{\text { density of substance }}{\text { density of water }} \\
& \underline{\mathrm{OR}} \\
& =\frac{\text { mass of a certain volume of a substance }}{\text { mass of equal volume of water alone }}
\end{aligned}
$$

(has no units)
D.Whitehall

Simple Pendulum \quad (P.F.C. Page 56 - 57: Measuring time)

Period (T)

This is the time it takes for the simple pendulum to complete one oscillation. We can calculate the period of a pendulum by using the formula:

$$
T=2 \pi \frac{\sqrt{ } \mathbf{l}}{\mathbf{g}}
$$

where
l - length of the pendulum (units: metre)
g-acceleration due to gravity (units: $10 \mathrm{~m} / \mathrm{s}^{2}$)
T - period (unit: seconds)
D.Whitehall

