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THE KINETIC THEORY OF GASES 

 

 

Boyle’s Law: Investigating the dependence of Volume on Pressure (Temperature 

kept constant) 

 

The diagram below shows the apparatus which gives a direct reading for both the volume 

and pressure of a fixed mass of gas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Air is trapped in a glass tube by a column of oil. The oil is supplied from a reservoir, 

where it can be pressurized by using a tyre pump. The pressure above the oil in the 

reservoir is read by using a Bourdon pressure gauge. The pressure above the oil in the 

reservoir is transferred to the trapped air in the glass tube. The experiment is performed at 

room temperature to keep the temperature constant.    

 

Since no air is pumped into the reservoir, the gauge reads atmospheric pressure, (100 

KPa). The pressure, P, is increased by pumping air and the volume, V, is recorded from 

the vertical scale.  
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The graphs below demonstrate the relationship between pressure, P, and Volume, V.  

 

 

This relationship is stated as Boyle’s Law: 

 

The volume of a fixed mass of gas is inversely proportional to its pressure if the 

temperature is constant.  

 

 

 

Boyle’s Equation: 

 

 

P1 V1  =  P2 V2 
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Charles’ Law: Investigating the variation of the Volume of a gas with Temperature 

(Pressure kept constant) 

   

The diagram below shows the apparatus which gives a direct reading for both the volume 

and temperature of a fixed mass of gas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A column of air is trapped by a bead of concentrated sulfuric acid in a capillary tube. The 

tube was then attached to a half-meter rule by using rubber bands. 

 

This apparatus is placed inside of a beaker containing water and it is kept upright by 

using a clamp-stand. The water surrounding the capillary tube is heating with a bunsen 

burner, while stirring with the thermometer. The readings of the thermometer, T, and the 

volume, V, were taken at 15oC intervals.  
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The graphs below demonstrate the relationship between Volume, V, and Temperature, T.  

 

 
 

This relationship is stated as Charles’ Law: 

 

The volume of a fixed mass of gas is directly proportional to its absolute temperature 

(on the Kelvin scale) if the pressure is constant.  

 

 

Charles’ Equation: 

 

 

 V1  =  V2    

     T1      T2 
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Pressure Law: Investigating the variation of the Pressure of a gas with Temperature 

(Volume kept constant) 

   

The diagram below shows the apparatus which gives a direct reading for both the 

pressure and temperature of a fixed mass of gas. 

 

 

 

The apparatus consists of a large flask filled with dry air connected by pressure tubing to 

a Bourdon pressure gauge. The bulb is placed inside a large container and is completely 

filled with water. The pressure of the air is recorded over a wide range of temperatures 

including 0oC and 100oC.  

 

 

 

The graphs below demonstrate the relationship between Pressure, P, and Temperature, T 
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This relationship is stated as Pressure Law: 

 

The pressure of a fixed mass of gas is directly proportional to its absolute temperature 

if its volume is constant.  

 

 

 

Pressure Equation: 

 

 

  P1  =  P2    

      T1      T2 
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Gas Law: (For a fixed mass of gas) 

 

 
 

Gas Law Equation: 

𝑷𝟏𝑽𝟏

𝑻𝟏
=

𝑷𝟐𝑽𝟐

𝑻𝟐
 

 
 

 

Ideal Gas Law 

 

No gas obeys the laws exactly. However, the laws provide a fairly accurate description of 

how gases behave under different conditions of pressure, temperature and volume.   

 

One useful concept is the Ideal (or perfect) Gas Law. The following equation can be used 

for gases which exactly obey the gas laws: 

 

 𝑃𝑉 = 𝑛 𝑅𝑇  
  

 where   P is pressure (Nm-2 or Pa) 

   V is volume (m3) 

   n is the number of moles of gas (mol) 

   R is the universal molar gas constant (8.314 JK-1mol-1) 

   T is the temperature (K) 

 

 

(N. B. In order for a gas to obey this equation, it must be subject to the following 

assumptions. There are no forces between the molecules of the gases and the internal 

energy of the gas is entirely kinetic and only depends on its temperature.) 
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Let N, be the number of particles in a substance. Then we can say that the number of 

moles of the substance, n, is given by the equation: 

 

𝑛 =  
𝑁

𝑁𝐴
 

 

 

 where      NA is Avogadro’s number (6.023×1023) 

 

Then the Ideal Gas Law can be rewritten as: 

 

𝑃𝑉 =
𝑁

𝑁𝐴
 𝑅𝑇 

 

But we also know that Boltzmann Constant (k) which is a gas constant per molecule  

(1.38 ×10-23 JK-1);  can be calculated by using:  

 

𝑘 =  
𝑅

𝑁𝐴
  

 

Hence we can also state the Ideal Gas Law as:  

 

𝑃𝑉 = 𝑁𝑘𝑇 
 

 

 

Kinetic Theory Equations 

 

Kinetic Theory is used to explain all the gas laws by observing the movement of the 

particles. Several assumptions are made to derive these equations:  

 

 The molecules of the gas can be assumed to be point molecules. This means that 

they have negligible volume.  

 

 There is no intermolecular forces of attraction. The particles are in random motion 

and the average speed of the random motions produce a constant force. (constant 

force  → constant pressure)  

 

 Collisions are (perfectly) elastic, the particles rebound after collision and kinetic 

energy is conserved. 

 

 Impact time is minimum. The rate of change of momentum during the impact 

gives an average force provided that the time of impact is much less than the time 

between impacts.  

 

 All molecules of a particular gas are identical. 
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 Newton’s Three Laws are adhered to. 

 

 There is a sufficiently large number of molecules for statistics to be meaningfully 

applied. 

 

 

 

 

Pressure of a gas can be given be given by the following equations: 

 

 

Equation 1: 

𝑃 =  
1

3
𝜌𝑐2̅̅ ̅ 

  

 where    𝜌 is the density of gas 

     𝑐2̅̅ ̅ is the mean squared speed of molecules of gas 

 

Equation 2: 

PV =
1

3
𝑀𝑔𝑐2̅̅ ̅     

 where    𝑉 is the volume 

     𝑀𝑔 is the mass of gas  

 

Equation 3: 

PV =
1

3
 𝑁𝑚 𝑐2̅̅ ̅     

  

where    𝑁 is the number of molecules 

     𝑚 is the mass of a molecule 

 

We can also state the mean (average) translational kinetic energy per monatomic 

molecule of a gas by using  

 

𝐾𝐸 =  
1

2
 𝑚 𝑐2̅̅ ̅     =     

3

 2
 

𝑅

𝑁𝐴
𝑇  

Hence  

𝑚𝑒𝑎𝑛 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐾𝐸 𝑜𝑓 𝑎 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 =  
3

2
 𝑘𝑇 
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Deriving Kinetic Theories of Gas Equations  (𝑷 =  
𝟏

𝟑
𝝆𝒄𝟐̅̅ ̅) 

 

 

 

 

 

 

 

 

Let us consider a closed circuit cubical container of length, L. each molecule of the gas 

has a mass, m. Consider a single molecule which is moving towards Wall X and its x- 

component of velocity is, u. 

The molecule has a x – component of momentum, m1u1 towards the wall X. when the 

molecule collides with Wall X, it changes the direction of momentum. 

Since the collision is elastic, it will rebound at the same speed and the momentum will be 

-m1u1. Hence the change of momentum due to collision with the wall is 2mu1. 

The molecule has to travel a distance 2L (from Wall X to Wall X again) before it collides 

with Wall X again.  

We can calculate the time that the molecule takes by using the formula  

 

𝑡𝑖𝑚𝑒 =  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑠𝑝𝑒𝑒𝑑
 

     

                 𝑡 =  
2𝐿

𝑢1
 

 

We can also calculate the force which is the rate of change of momentum:  

 

    𝐹 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

𝑡𝑖𝑚𝑒 
   

 

𝐹 =  2𝑚𝑢1 ÷
2𝐿

𝑢1
  

 

 

∴  𝐹 =  
𝑚𝑢1

2

𝐿
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Hence the pressure at X can be calculated by using the equation  

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑋 =  
𝐹𝑜𝑟𝑐𝑒 𝑎𝑡 𝑋

𝐴𝑟𝑒𝑎 𝑎𝑡 𝑋
 

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑋 =  
𝑚𝑢1

2

𝐿
 ÷  𝐿2  

 

                                   𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑋 =  
𝑚𝑢1

2

𝐿3
  

 

If there N molecules in the container and their x – components velocity are  

 

𝑢1
2, 𝑢2

2, … , 𝑢𝑛
2 

 

Then the total pressure on the Wall X is  

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑋 =  
𝑚(𝑢1

2 + 𝑢2
2 + 𝑢3

2 + ⋯ +  𝑢𝑛
2)

𝐿3
 

 

Hence  

𝑃 =  
𝑚𝑁𝑢2̅̅ ̅

𝐿3
 

 

 where   𝑢2̅̅ ̅ is the mean squared velocity in component x – direction 

   m  is the mass of molecules 

    N  is the number of molecules 

 

Since mN is the total mass of a gas in the container the total density is   𝜌 =
𝑚𝑁

𝐿3  

 

Therefore we can rewrite the equation of pressure at X as  

𝑃 = 𝜌𝑢2̅̅ ̅ 
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 If 𝑐2̅̅ ̅ is the resultant velocity of a molecule in x, y and z planes; then the components of 

velocity can be represented by u, v and w respectively.   

We can therefore state that   

𝑐2̅̅ ̅ = 𝑢2̅̅ ̅ + 𝑣2̅̅ ̅ + 𝑤2̅̅ ̅̅  

  

Where  𝑐2̅̅ ̅   is the mean square velocity of molecules  

  𝑢2 ̅̅ ̅̅   is the mean square velocity in x – direction 

𝑣2 ̅̅ ̅̅   is the mean square velocity in y – direction 

𝑤2̅̅ ̅̅    is the mean square velocity in z - direction 

 

Since most of the molecules are moving randomly, we can state   

 

𝑢2 ̅̅ ̅̅
 = 𝑣2̅̅ ̅ = 𝑤2̅̅ ̅̅  

 

Hence   

𝑢2̅̅ ̅ =
1

3
𝑐2̅̅ ̅ 

 

Finally we can state that the pressure at X can be determined by using  

 

𝑃 =  
1

3
𝜌𝑐2̅̅ ̅                 [as required] 

 

 

Deriving Kinetic Theories of Gas Equations (𝑷𝑽 =
𝟏

𝟑
 𝑵𝒎 𝒄𝟐̅̅ ̅) 

 

Recall that to calculate Pressure at X by a molecule , we use the equation   

 

𝑃𝑥 =  
𝑚𝑢1

2

𝐿3
 

 

since    V = L×W×H 

𝑃𝑥 =  
𝑚𝑢1

2

𝑉
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The pressure of many molecules moving in one plane, can be calculated by  

 

𝑃1 =  
𝑚𝑢1

2

𝑉
  

 

𝑃2 =  
𝑚𝑢2

2

𝑉
   ……… 

 

𝑃𝑛 =  
𝑚𝑢𝑁

2

𝑉
               

 

Hence the total pressure is given by    𝑃𝑇 =  𝑃1 + 𝑃2 + 𝑃3 + ⋯ + 𝑃𝑁   

 

Therefore  

  𝑃𝑇 =  
𝑚(𝑢1

2+𝑢2
2+𝑢3

2+⋯+ 𝑢𝑁
2)

𝑉
 

 

We can say that the mean (or average) of N molecules velocity, denoted by (𝑢2̅̅ ̅) can be 

calculated by  

𝑢2̅̅ ̅ =
(𝑢1

2 + 𝑢2
2 + 𝑢3

2 + ⋯ +  𝑢𝑁
2)

𝑁
  

 

Therefore   

𝑁 𝑢2̅̅ ̅ = (𝑢1
2 + 𝑢2

2 + 𝑢3
2 + ⋯ +  𝑢𝑁

2) 

 

Hence  

𝑃𝑇 =  
𝑚𝑁 𝑢2̅

𝑉
 

 

Since the motion of the molecules in a gas is totally random, the pressure exerted in each 

place is the same  

 

𝑃𝑇 =  
𝑁𝑚𝑢𝑥

2̅̅ ̅̅ ̅

𝑉
=   

𝑁𝑚𝑢𝑦
2̅̅ ̅̅ ̅

𝑉
=  

𝑁𝑚𝑢𝑧
2̅̅ ̅̅̅

𝑉
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If we let  𝑐2̅̅ ̅ be the resultant velocity of all three components, then  

 

𝑐2̅̅ ̅ = 𝑢𝑥
2̅̅ ̅̅ ̅ + 𝑢𝑦

2̅̅ ̅̅ ̅ + 𝑢𝑧
2̅̅ ̅̅̅ 

 

And we can deduce that  

 

𝑐2̅̅ ̅ = 3𝑢𝑥
2̅̅ ̅̅ ̅ =  3𝑢𝑦

2̅̅ ̅̅ ̅ =  3𝑢𝑧
2̅̅ ̅̅̅ 

(because all the molecules travel at the same velocity in each plane) 

 

Hence  

1

3
𝑐2̅̅ ̅ = 𝑢𝑥

2̅̅ ̅̅ ̅ =  𝑢𝑦
2̅̅ ̅̅ ̅ =  𝑢𝑧

2̅̅ ̅̅̅ 

 

And we can rewrite the equation     𝑃𝑇 =  
𝑁𝑚𝑢𝑥

2̅̅ ̅̅ ̅

𝑉
  as  

 

𝑃𝑇 =  
𝑁𝑚

1
3

𝑐2̅̅ ̅

𝑉
 

 

Therefore we can conclude that  

𝑃𝑉 =  𝑁𝑚
1

3
𝑐2̅̅ ̅       [as required] 

 

 

 

Average Translational Kinetic Energy of Monatomic Molecules   

 

The mean kinetic energy of a molecule of an ideal gas is given y 

 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐾𝐸 =  
𝑡𝑜𝑡𝑎𝑙 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠
 

 

We know that   

 

𝑃𝑉 = 𝑛 𝑅𝑇          and          𝑃𝑉 =  𝑁𝑚
1

3
𝑐2̅̅ ̅ 
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We can say that  

𝑁𝑚
1

3
𝑐2̅̅ ̅ = 𝑛 𝑅𝑇 

 

But we know that  𝑛 =  
𝑁

𝑁𝐴
 . So we can rewrite the equation as  

 

 
1

3
 𝑁𝑚 𝑐2̅̅ ̅     =     𝑅

𝑁

𝑁𝐴
𝑇  

 

Given that    𝑘 =  
𝑅

𝑁𝐴
    the equation becomes   

 
1

3
 𝑁𝑚 𝑐2̅̅ ̅     =     𝑁𝑘𝑇 

 
1

3
𝑚 𝑐2̅̅ ̅     =     𝑘𝑇 

 

𝑚 𝑐2̅̅ ̅     =     3𝑘𝑇 
 

Since      𝐾𝐸 =  
1

2
 𝑚𝑐2̅̅ ̅ 

1

2
𝑚 𝑐2̅̅ ̅     =     

3

2
𝑘𝑇 

 

Hence  

𝑚𝑒𝑎𝑛 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐾𝐸 𝑜𝑓 𝑎 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 =  
3

2
 𝑘𝑇 

 

 

N.B.  From using the equation derived above, we can make the following statements: 

 

 The total kinetic energy in 1 mole of an ideal gas can be calculated by  

 

𝐾𝐸𝑇 =  
3

2
𝑅𝑇 

 

 The total kinetic energy of n moles of an ideal gas can be calculated by  

 

𝐾𝐸𝑇 =  
3

2
𝑛𝑅𝑇 

 

 


